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STABLE HARMONIC MAPS INTO THE
COMPLEX PROJECTIVE SPACES

JINGYI CHEN

1. Intraoduction

In this paper, we study smooth stable harmonic mappings from com-
pact manifolds into the complex projective spaces. We begin with some
general definitions. Let (M, g) and (N, h) be compact smooth Rieman-
nian manifolds. A smooth map f from M into N is harmonic if it is a
critical point of the Dirichlet energy functional

E(¢) = /M |def? do,

where ¢ € C®(M,N), and v, denotes the Riemannian volume form
of (M, g). A harmonic map f is stable if the second variation of the
energy of f is nonnegative, i.e., if

05 TEGmo=2 [ (IIV'V||2 - YRV (V, fea)V, m)) dv,
for all smooth variations f; of f with fo = f, and the variational vector
field V = 357 ftlt=0, where V' denotes the pullback connection from TN
and {e,},a = 1,...,n, is an orthonormal basis for the tangent space
of M. It is not hard to see that if the sectional curvature BV of N is
nonpositive, then every harmonic map is stable (in fact, minimizing)
due to the convexity of the energy. But if RV > 0, the energy func-
tional fails to be convex in general, and a minimizing sequence may
not converge. One result in this paper is that in many cases we cannot
minimize energy by smooth maps in a given homotopy class.
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Another interesting aspect of the theory of harmonic maps is the
theory of harmonic morphisms. Its history goes back to Jacobi in
1847 [14], and to Constantinescu and Cornea in their study of Brelot
harmonic spaces in 1965 [9].

f € C*(M,N) is a harmonic morphism if for every harmonic func-
tion ¢ on an open set A C N such that ¢71(4) is non-empty, the
composition f o ¢ is harmonic on ¢~1(4) C M.

A sufficient and necessary condition for a smooth map to be a har-
monic morphism is obtained by Fuglede [10] and Ishihara [13]. It as-
serts that f is a harmonic morphism if and only if f is harmonic and is
horizontally weakly conformal; see Section 3. This result gives a local
characterization of harmonic morphisms. In contrast, the stability of
harmonic mappings is a global condition. A connection between these
two is established in Section 3 in this paper, via an algebraic equation
which stable harmonic maps into certain positively curved spaces sat-
isfy. In fact, we show that any smooth stable harmonic map from any
compact smooth Riemannian manifold into the 2-sphere S? with the
standard Euclidean metric is a harmonic morphism.

Now we summarize the main results in this paper. In Section 2 we
obtain a rank estimate which asserts that the rank of the differential
of a smooth stable harmonic map from a compact manifold into CP*
with the Fubini-Study metric has to be even; see Theorem 2.4. Fur-
ther, in Theorem 2.1 we prove that the map is pair-wise conformal
(see Theorem 2.1 and Corollary 2.3). In Section 3, we show that any
smooth stable harmonic map into S? is a harmonic morphism. Section
4 focuses on the case where the domain is a compact 3-manifold. Frist,
in Theorem 4.1 we prove that the image set is an algebraic curve in
CP* with its singular locus consisting of only finitely many points at
worst. Then in Theorem 4.6, we show that the stable harmonic map
is a harmonic morphism away from the preimage of the singular locus
to the algebraic curve substracting its singular locus. In Section 5, by
composing the stable harmonic map with a standard projection in C P*,
we obtain a non-constant harmonic morphism from the entire domain
into CP!. Hence, we find a topological obstruction on the existence of
stable harmonic map from M? into CP*, namely, M? is necessarily a
Seifert fibre space; see Theorem 5.1.

The author would like to thank P. Li, R. Schoen, L.F. Tam and A.
Treibergs for their valuable comments on this work and for constant



44 JINGYI CHEN

encouragement, and also to thank F. Burstall and J.C. Wood for their
interest in this work and suggestive communication. The author is also
grateful to the referee for his suggestions that led to some improvements
in the presentation of the paper.

2. Rank estimates

Let f be a smooth mapping from a compact Riemannian manifold
M without boundary into the complex projective space CP* with the
Fubini-Sduty metric. We denote the Riemannian matric on M and the
Fubini-Study metric on CP* by g and h respectively. For any point
p € M, let {e;,...,e,} be an orthonormal basis for T,M, the tangent
space of M at p, where n = dimM. Let (z!,...,2*) be the complex
coordinates in a neighborhood of f(p) in CP* and write z2* = z* + iy®
for a = 1,...,k = dimcCP*. For simplicity, we introduce the following
convention throughout the paper:

0 0

3a=%, 8&—(—9?.

Also we denote the complex structure on CP* by J. It is well known
that J can be regarded as a real linear map from T, C P* to Ty, CP*
such that

JO, = 0s, JOs = —04.

In the following, we set, for the Riemannian curvature tensor,
R(X,Y,Z,W) =(R(X,Y)Z,W).

It is clear that
R(X,Y,Z,W)=R(Z,W,X,Y),

R(X,Y,Z,W) = —R(Y, X, Z,W) = —~R(X,Y,W, Z).

Notice that the above convention is different by a minus sign from [15].
We also write the differential in local coordinates as follows:

df(ez) = f;laa +fz'&8&7

where the summation convention is used. We have
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Theorem 2.1. Let (M,g) be a compact n-dimensional Riemannian
manifold without boundary. If f is a smooth stable harmonic map from
M to CP* with the Fubini-Study metric h, then for any o, 3 =1,....k =
dimCCPk

YRR =YrR 17,
i=1 i=1
Y == 1
i=1 i=1
Proof. Since C'P* has constant holomorphic sectional curvature c,

Proposition 7.3 in [15] asserts that for any X,Y,Z, W € Ty, CP*

_R(X,Y,Z,W) = z(h (X, Z)R(Y, W) — h(X, W)R(Y, Z)
(1) +h(X, JZ)R(Y, JW) — h(X, JW)h(Y, J Z)
+2h(X, JY)h(Z, JW)).

Therefore

’%i (R(df (e;), X)Jdf (e;),Y)

n

=3 ((df(e:), Tdf (e)A(X, Y) — h(df (e:), Y Ih(X, Jdf (e:))

i=1

+h(df (e:), J2df (e:))A(X, TY)
—h(df (e:), TY )X, J*df (e.)
(2) +2h(df( 5 X)h(de(ei),JY))

A e, dF(HCX, TY) + h(d (e, TY I, dFe0)
+2h(df (1), TX)h(df (e:), V)

—z( (df (e:), Jdf (e:))h(X, Y) + 3h(df (e:), Y )h(IX, df (e:))
—h(df (e:), df (e))h(X, JY) + h(df (e:), TY)R(X, df (e:))),
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where we have used the fact that h is Hermitian, i.e., h(JZ,JW) =
h(Z,W) for any Z,W € Ty,yCP*. Similarly

S35 (R@ ) TX) (), Y)
= 3 (A (e, (D)X, V) = h(df (e, VIRUIX, df(e)
(), JA (€)X, TY)
~h(df(ed), TY AT X, T )
(3) +2h(df (e:), I X)h(df (e:), JY))

(- Rldf(e:), df (e:))(X, JY) = h(df (e:), Y )h(I X, df (e:))

+h(df (e:), Jdf (e))A(X,Y) — h(df(e:), Y )A(X, df (e:)
—~2h(df (e:), X)h(df (e:), Y))

Il

1

-
[

il

(- Aldf (e:), df (e:))h(X, JY) = h(df (e:), Y)R(J X, df (e:))
+h(df (e:), Jdf (e:))R(X, Y )
—3h(df(e:), JY (X, df (e:)).

s
Il

Now by subtracting (3) from (2), we obtain

n n

%gR(df(ei),X)de(ei),w—§Z< (df (e, TX)df (), Y)

@ = (4h(df(e:), YIR(IX, df (e1))

=1

+4h(df (e:), JY)h(X, df (e1)))-

Recall that in [19] and [5], the following proposition is derived by
an argument introduced by Lawson and Simons in [16] on the second
variation of energy via holomorphic vector fields.

Proposition 2.2. Suppose that M is a smooth compact Riemannian
manifold and N is a compact irreducible Hermitian symmetric space
with a complez structure J. Let f : M — N be a stable harmonic map.
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Then for any p € M and X € Ty, N, we have

(5) 3 (JRM(df(es), X)df (e:) — RN (df (ex), JX)df (e:)) =0,

i=1
where n = dimM, {ey,...,e,} is an orthonormal basis for T,M, and
RY denotes the curvature tensor of N.

Since f is a stable harmonic map into C P* which is irreducible Her-
mitian symmetric of compact type, by combining (5) with the fact that
the curvature R commutes with J for a Kahler manifold (see Proposi-
tion 4.5 in [15]) i.e., for all vector fields W, Z

R(W,2)J = JR(W, Z),

we can obtain

(6) D _(B(df(e:), X)Jdf(e:),Y) =D (R(df(e;), TX)df (e:),Y).

=1 =1
Then from (6), the left-hand side of (4) is 0. Thereby, the right-hand
side of (4) has to be 0, so we have

n

(1) 3 (h(dF(e), JX)h(df (), Y) + h(df (e:), X)A(df (e:), IY)) = 0.

i=1

Next, we pick some special X and Y for (7). In order to see what X and
Y to choose, we first work out a general formula in local coordinates.
Let

X =a%0, +b%0;,Y = ¢*0, + d®0;

be arbitrary tangent vectors in T}, C P¥, where a®,b%,¢*,d* € R are
arbitrary constants for a,& = 1,...,k. We notice that in the complex
local coordinates around f(p) on CP*

df (e;) = [0 + [{ O
Jdf (e;) = — 0o + f{ 05,
JX = —b%9, + a*0;,
JY = —d®d, + c*05.
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Hence, we have from (7) that

0=%" (h(f;’aa + £R0a, P05 + PO, R(f1 0, + £15, —b°05 + a°B5)

=1
+h(f20a + f0s,0°0p + P O,)R(f70y + 105, —d0s + c“ag))

k n

=> > ((f:’c" + fEA) (268 + fPaP)
(8) +(ffa® + fEV*) (—fPdP +f{§cﬁ))

=SS (@ )+ (@ ) £ A

a,f i=1

+afe +am e ff - WP+ 1))

Now we just need to choose some special values for a®, b%, c?, d®. First,
let (8%, ...,0F) = (d*,...,d*) = (0, ...,0) in (8). Then

k n
ZZ c® + a*c’ f“fﬁ—O
a,f i=1
Setting (a?,...,a*) = (0,...,1,0,...,0) where 1 is in the yth place and
(ct,...,c*) =(0,...,1,0,...,0) where 1 is in the dth place, we obtain
9) S+ =0
=1

Second, let (b, ...,b%) = (c,...,¢*) = (0, ...,0). Then

Zzaadﬂf fﬁ Zaﬂdafafﬂ

a,f i=1
Setting (a,. ) = (0,..,,1,0,...,0) where 1 is in the yth place and
(d,...,d*) = ( 1,0, ...,0) where 1 is in the dth place, we get
(10) S =Y 50

i=1 =1

This completes the proof of Theorem 2.1.
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In particular, if we let v = § in (9) and (10), we have

Corollary 2.3. Let (M,g) be a compact Riemannian manifold. If f
is a smooth stable harmonic map from M to CP* with the Fubini-Study
metric h, then for any vy =1,...,m = dimcN

n

(a1) Y. 5=,
(12) S A=Y S

An interesting application of Theorem 2.1 and Corollary 2.3 is that
they allow us to draw a conclusion on the rank of the differential of the
stable harmonic map. In fact, we have

Theorem 2.4. Let (M,g) be a compact n-dimensional Riemannian
manifold without boundary. If f is a smooth stable harmonic map from
M into CP* with the Fubini-Study metric, then the rank of the differ-
ential of f is even at any point in M.

Proof. 'We use the same notation as before. At any point p € M,
we set a; = (f},..., f2) and b; = (f,..., f2) for i = 1,...,k. So we can
represent the differential in terms of matrix as follows:

f11 f711 a1
k k
1 - Qi
dfP = 1 1% = b
1 n 1
B e \b

If the rank of df, is 0, the theorem is proved at the point p. So we
assume that the rank of df, is not 0. Without loss of generality, let
a; # (0,...,0). By Corollary 2.3, we have that

al-b1=0,
al-alzbl-bl#o.

Thus a; and b; are perpendicular to each other and have the same
length A = |a;| = |b1|. Hence, there is an orthonormal linear map p in



50 JINGYI CHEN

T4(»CP* such that in the fixed orthonormal basis {81, 8i, ..., Ok, 0; },

p(a’l) = (’\7 Oa Oa ""O)a
p(by) = (0, 1,0, ..., 0).

Furthermore, p preserves the inner product in 7, M. Hence, Theorem
2.1, for any 4,5 =1, ..., k, yields

In particular, for any 7 = 1,..., k, we have

Aci = pla;) - plag) = p(b:) - p(b1) = Ady,
Ay = p(as) - p(by) = —p(b;) - plar) = —Ad;.

Thus A # 0 implies that
(13) q =dy ¢ =—d

Now we consider the following submatrix of p(df,):

71 .2

ko

I Te—1 C3 ... C,
7 & ... &R

~ ko gk

2(k—1) % (n—2)

which is obtained from p(df,) by crossing out the first row c;, the
(k + 1)st row d; and the first two columns. We claim that the matrix
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IT still has the same two properties as p(df,) has; namely,
= Z cicl
§=3
= ZC’;C.’; —dd - dd
(14) = Zd’dJ —cid -
= Z dyd] — dyd} — (~d;)(~d})

- Y
s=3
=T Ty,

and

;= cidl
§=3
=Y cidl —cid] — cidj
s=1
(15) = -3 dic) - cid] — cid
s=1
=~ > dic — di(—) - (~di)e]
s=1

-
s=3
= _ﬁz * T,y
From the row reduction of p(df,) it is easy to see that

(16) rank df, = rank p(df,) = 2 + rankII.

Since II enjoys the two properties, we can do the same discussion on
IT as we just did on p(df,). Continuing this procedure (so we have
(14) and (15) at each step), we see that each time we obtain 2 on
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the right hand of (16) and a smaller matrix with the two properties.
Finally, when the process stops, the remaining submatrix, if it exists,
has to be identically 0, due to the fact that this matrix still has the two
properties, namely, its rows are pair-wise perpendicular and with the
same length in the sense of Corollary 2.3. Hence the proof of Theorem
2.4 is completed.

3. Stable harmonic maps into 5?2

The main result in this section is given by

Theorem 3.1. Let f be a stable harmonic map from any compact
smooth Riemannian manifold (M, g) into S? with the standard metric.
Then [ is a harmonic morphism.

Before giving the proof of Theorem 3.1, let us recall some facts about
harmonic morphisms.

Definition 3.2. A smooth map ¢ : (M, g) = (N, h) is horizontally
weakly conformal if at each point p in M

ij@fgﬁ = af
a0 951~ AR
where ) is a non-negative continuous function.

The following result belongs to B. Fuglede [10] and T. Ishihara [13].

Proposition 3.3. A smooth map between two Riemannian mani-
folds is a harmonic morphism if and only if it is both harmonic and
horizontally weakly conformal.

Proof. (Theorem 3.1) It is immediate by Definition 3.2 that (11)
and (12) in Corollary 2.3 together imply that f is horizontally weakly
conformal. Therefore by Fuglede and Ishihara’s result (Proposition
3.3), we conclude that f is a harmonic morphism. This completes the
proof of Theorem 3.1.

Remark 1. The converse of Theorem 3.1 is not true. In fact, the
Hopf fibration from S2 to S? is a harmonic morphism but not stable.

Since stable harmonic map into S? is a harmonic morphism, it enjoys
all the properties that the latter has. We collect some interesting facts
in

Corollary 3.4. Let f be a non-constant stable harmonic map from
any compact manifold into S* with the standard metric. Then the fol-
lowing hold:
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(a) f is an open mapping and hence surjective.

(b) The set S of all critical points of f cannot disconnect any open
ball in M. Furthermore, if M is real analytic, then S is a real analytic
variety of codimension > 2.

(c) The fibres over regular points are minimal submanifolds of M.

(d) rank(df,) =2 or 0 at every point p € M.

Proof. After knowing that f is a harmonic morphism, (a) and (b)
are due to B. Fuglede [10], (c) is due to P. Baird and J. Eells [2]. (d)
follows from f being horizontally weakly conformal.

In general, it is very interesting to know whether one can find an
energy minimizer in a given homotopy class if the target manifolds do
not have non-positive sectional curvature. P.F. Leung [17] proves that
any stable harmonic map from compact manifold into S™ for n > 3
is constant. Therefore, if the target space is S, then one cannot find
smooth energy minimizers in any non-trivial homotopy class. However,
this is not true in general if the target is S?, since Lichnerowicz [18]
observed that any (anti) holomorphic maps between two K&hler man-
ifolds minimize the energy in their homotopy classes. Nevertheless, a
consequence of Theorem 3.1 provides a necessary condition on stable
harmonic maps into S. In particular, we have

Corollary 3.5. Let M be any compact 3-manifold which is not a
Seifert fibre space. Then any stable harmonic map from M into S? is
constant.

Proof. Theorem 3.1 implies that the stable harmonic map f is a
harmonic morphism. If f is not constant, a result of P. Baird and J.C.
Wood [3] asserts that the foliation given by the fibres of f gives M the
structure of a C* Seifert fibre space. This contradicts the assumption
on M.

We should point out here that closed 3-dimensional Seifert fibre
spaces are completely classified by the following result due to W. Thur-
ston [22].

Proposition 3.6. Any closed Seifert fibre space (M,F) of dimen-
ston three is homeomorphic to E/T, where U is a group of isometries
of E acting freely, properly and discontinuously on E, and E is one
of the following Riemannian manifolds: (1) R* x R, (2) S? x R, (3)
H?x R, ({) S3, the metric on each of these is the product of standard
metrics; (5) R® with the metric ds® = dz® + dy® + (dz — zdy)?; (6)
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R} = {(z,y,2) € R? : y > 0} with the metric ds* = (dz”® + dy?®)/y* +
(dz/y + d2)?; (1) Q,q = {(21,22) € C° : |21)?/D* + |22?/q® = 1} with
the induced metric from the standard metric on R*. The foliation F is
obtained from the standard foliation on E.

4. Maps from compact 3-manifolds

As we have seen in the last section, there is a strong restriction
on the rank of the differential of a smooth stable harmonic map into
CP*. Specially, if the dimension of the domain manifold is odd and not
larger than 2k, the real dimension of C'P*, then the differential cannot
have full rank at any point. In this section, we shall discuss the stable
harmonic mappings from compact 3-manifolds into C'P*.

First, let us recall that an analytic subvariety V of a complex mani-
fold is a subset given locally as the common zeros of a finite collection
of holomorphic functions. A point p € V' is called a smooth point of V
if V is a submanifold near p, otherwise it is called a singular point. The
singular locus S of V is the set of all singular ponits of V. An algebraic
subvariety of CP* is the subset expressed locally as common zeros of
finitely many homogeneous polynomials. The important theorem of
Chow asserts that any analytic subvariety of the complex projective
space is algebraic; see for example [11]. Finally, a one-dimensional
algebraic subvariety of CP* is called an algebraic curve in C'P*.

The first main result in this section is the following assertion on the
image set.

Theorem 4.1. Let M be a smooth compact manifold of dimension
three without boundary. Let f be a non-constant stable harmonic map
from M into CP* with the Fubini-Study metric. Then the image set
f(M) of M under f is a compact algebraic curve in CP* and the singular
locus S of f(M) consists of finitely many points at most.

The proof of Theorem 4.1 follows from the following sequence of
lemmas. The lemma below tells us that away from a small set f(M) is
a smooth surface due to the rank restriction.

Lemma 4.2. Let M be a smooth compact manifold of dimension
three without boundary. Let f be a non-constant smooth stable harmonic
map from M into CP* with the Fubini-Study metric. Then the set
f(M) — f(K)— U, q is a smooth surface in CP*, where K = {z € M :



STABLE HARMONIC MAPS 55

df, = 0} and |, ¢; is the union of at most countably many points.

Proof. First, by Theorem 2.2, we know that for any point p € M,
the rank of df, is either 0 or 2 since dimM = 3. Let p € M be any
rank-2 point. Then df, # 0, and there is an open neighborhood U of p
in M such that rank df, # 0, hence rankdf, = 2, for any point ¢ € U.
The tangent space of M at p is decomposed orthogonally as follows
T,M = Ker(df,) ® H, where H, = (Ker(df,))*. Let e; be a unit vector
in Ker(df,), and {ez, e5} be an orthonormal basis for H,. Next, consider
a small open neighborhood H of 0 in H, such that the exponential map
exp, is diffeomorphic on H. Define F: H — CP* by F = foexp,. It
is clear that rank dF|, ,y = 2 for any (z,y) € H. The inverse function
theorem then asserts that H is diffeomorphic to F(H) C CP*. Thus
F(H) is a smooth surface in CP*. But F(H) = f(exp,(H)), hence
f(exp,(H)) is a smooth surface in CP*. Moreover, since exp, is a
diffeomorphism, exp,(H) is a smooth surface in M.

Second, we construct an open neighborhood V, of p in M such that
f(V;) = f(exp,(H)) via the fibres over exp,(H). In fact, for any point
g € f(exp,(H)), it is a regular value of f : the preimage of f(exp,(H))
— f(exp,(H)). According to the regular value theorem, the preimage
f~1(q) is a smooth curve in M with no end points. So f~!(g) can be
viewed as a fibre over the surface exp,(H) and it crosses the surface.
Therefore we can find an open neighborhood V), of p in M, which con-
tains at least an open piece of f(exp,(H)). From the construction of
Vp, it is easy to see that f(V,) = f(exp,(H)) is a smooth surface in
CP*. In fact, by Lemma 4.3, which we are going to show below, f(V,)
is a 1-dimensional complex submanifold of € P*.

Finally, let V,, and V,, be any two open neighborhoods, which are
constructed as before around points p; and p, respectively. Set T =
{z € f(Vp,)Nf(Vy,) ¢ F(Vy) U f(Vp,) fails to be a smooth surface at z}.
If T is nonempty, then T consists of isolated points, since both f(V,,)
and f(V,,) are l-dimensional complex submanifolds of CP* (Lemma
4.3) and the theory of complex one variable asserts that if any two holo-
morphic functions equal on a set which contains a limit point, the two
functions are identicaly same. So T consists of countably many points
at most. Since M — K can be covered by a countable family of 1,
the union of the sets T' consists of at most a countable family of points
{g:}. Clearly the set f(M) — f(K) — U, ¢; is a smooth 1-dimensional
complex submanifold of CP*. Hence Lemma 4.2 is proved.
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Lemma 4.3. The smooth surface f(V,) in CP* is a one-dimensional
complex submanifold in CP¥.

Proof. To prove this lemma, we only need a local argument. Let
g € f(V,) be an arbitrary point. Take any preimage point p of ¢ in
M. Then df, is of rank two. For simplicity, we write e; and e, for
0., and J,, respectively. Also let e; be a unit vector in Ker(df,). The
coordinate system around p with respect to {e;, ez, e3} is denoted by
(21, Z2,23). Observe from the construction of exp,(H) that we have

1 1 1 1 1
T T2 T3 1 T2 0
k k k k k 0
) df,= | I3 imde | =i le
T ro T3 1 o
E gk gk LI
z1 Jx2 J23 [ gkx3 T Y a2 2kx3

But from Corollary 2.3, for any o = 1,...,k, the ast row and the (o +
k)st row of the last matrix in (17) are perpendicular to each other and
have the same length. Hence, we can write

o @ 3

o faa ) oy sinf, cos#,
o o 3

2y Jan —cosf, sind,

or

o fo sinf, cos 8,
(18) ( a fé ) = Ao (cos&a —sin6a>

T T2

for some \,, 8, € R. Further, it is not hard to see from Theorem 2.1
that the above two cases cannot happen simultaneously. Hence if we
still denote the complex structure on CP* by J, we have for the first



STABLE HARMONIC MAPS 57

case
k

J-dfpler) = J(O_ (200 + f5,05))

a=1
k
= J(Z Aa(8in 0,08, — cos 6,03))

a=1
k
= Z >‘a (SiIl 0a65 + cos eaaa)

a=1
k

= Z( -’:1260‘+ 526&)

a=1

= dfp(e2).

Therefore
J - dfp(es) = J* - dfyp(er) = —dfp(er).

Similarly, for the second case,

J - dfp(er) = —dfy(e2), J - dfy(e2) = dfp(er).

Since df,(e;) and df,(ez) are linearly independent in T}, f(V}), and
Tsp) f(Vp) is two-dimensional, we obtain that T f(V,) is J-invariant.
Thus f(V,) is a one-dimensional complex submanifold in CP* because
T,f(Vp) is J-invariant for any point p € M of rank two. This proves
Lemma 4.3.

From Lemma 4.2 and Lemma 4.3 it follows that f(M)— f(K)—-U, ¢
is a smooth 1-dimensional complex submanifold in CP*.

Next it is not hard to estimate the size of the image of the points of
rank zero. In fact, we have

Lemma 4.4. The a-dimensional Hausdorff measure H*(f(K)) is
zero for any a > 0.

Proof. 'To see this, we recall a theorem of Sard ([20, Theorem 2])
which asserts that if the points of the set A are all of rank O,
s > 0 and f is of class C%,¢ > 1, then f(A) is s/g-null, i.e., the
s/g-dimensional Hausdorff measure is 0. Now our map f is smooth,
hence the a-dimensional Hausdorff measure of K is 0 for any o > 0.
This completes the proof of Lemma 4.4.

Lemma 4.5. The image set f(M) of M under fis an algebraic
subvariety in CP*. In fact, f(M) is an algebraic curve in CP*.
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Proof. By Lemma 4.2 and Lemma 4.3, f(M) — f(K) —; ¢; is a 1-
dimensional complex submanifold in CP*, hence f(M)~ f(K)—U, g: is
open in f(M). This implies that (J; ¢;: U f(K) is closed in f(M). Since
f is smooth and M is compact, f(M) is a compact subset in C P* which
in turn implies that {J; ¢; U f(K) is closed in CP*. By Lemma 4.4, the
a-dimensional Hausdorff measure

Ho(Ja U £(K) < B @) + H(f(K)) =0

for any o > 0. Now f(M) — f(K) — U, ¢; is a closed 1-dimensional
analytic variety of CP* — f(K) —J; ¢;- Recall an extension theorem of
Shiffman [23], which is a generalization of Remmert-Stein and Bishop
extension theorems, states that if £ C M is a closed set of Hausdorff
(2t — 1)-measure zero and U is a pure t-dimensional analytic subvariety
in M — E where M is a complex manifold, then the topological closure
U is an analytic subvariety in M. Now by taking « to be 1 and applying
Shiffman’s extension theorem, we conclude that the topological closure
of f(M) — f(K) -, ¢ is an analytic subvariety in CP*. But f(M) =
f(M) — f(K) — U;q;- The Chow’s theorem implies that f(M) is an
algebraic subvariety in CP*. Hence f(M) is an algebraic curve since
it is of one dimension. This finishes the proof of Lemma 4.5.

Remark 2. Since the singular locus § of an analytic subvariety
of CP* is again an analytic subvariety of CP*, S is a 0-dimensional
subvariety of CP*. Clearly, any limit point of S belongs to f (M) since
JF(M) is closed, and hence belongs to S since the smooth points of the
algebraic subvariety f(M) form an open set in f(M). So S is compact
and therefore consists of finitely many points (see {12, p. 91]).

Remark 3. It is easy to see by the Wirtinger theorem, the area of
f(M) is finite (see for example [11]).

Hence Theorem 4.1 is proved.

As indicated by Theorem 4.1, we know that the image set is a smooth
surface away from finitely many points, if there exist any. In fact, the
stable harmonic map behaves nicely away from these singular points.
We shall prove

Theorem 4.6. Let M be a smooth compact manifold of three dimen-
sions without boundary. Let f be a non-constant stable harmonic map
from M into CP* with the Fubini-Study metric. Then fis a harmonic
morphism from M\f~'(S) to f(M\S), where S is the singular locus
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of f(M).
First, we recall that a smooth map v : (M,g) — (N,h) is called
horizontally weakly conformal if at each point p € M

iy Ou® 0P
ozt Ozi

= A(p)h®®.

Note that u is horizontally weakly conformal is equivalent to that at
each point p € M either du, = 0 or du, maps the horizontal space
H, = (Ker(du,))" conformally onto T, N.

Lemma 4.7. f is horizontally weakly conformal from M — f~1(S)
to f(M) —S. |

Proof. By Lemma 4.3, f(M) — S is a one-dimensional submanifold
in CP*. For any point p € M — f~1(S), we can choose a complex
coordinate z!' in a small neighborhood of f(p) in f(M) — S. Then
extend 2! to a complex coordinate in a neighborhood of f(p) in CP*,
and denote it by (21, ..., 2%). Notice that in this coordinate, (17) simply

takes the form
(far £z, 0
00 O

dfp, =

2kx3

Furthermore, we have used the normal charts around p and f(p) in
Theorem 2.1. Now it is immediate from (18) that f is horizontally
weakly conformal at p. Since p is arbitrary in M — f~1(S), this finishes
the proof of Lemma 4.7.

Lemma 4.8. f: M — f~1(S) — K — f(M) — S is harmonic.

Proof. Consider the vertical space V,, = Ker(df,) and the horizontal
space H, = (Kerdf,)* at any rank-two point p in M. Clearly V, (re-
spectively H,)} is the fibre at p of a vector bundle V' (respectively H,)
over M\K. Let {e;,e;} be an orthonormal frame for H, and e; be a
normal frame for V' in a neighborhood of p. First, we define a complex
structure by J¥ on H,. Since J¥ and —J are the only two complex
structures H, compatible with the metric, without loss of generality,
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we assume that
(19) J;{(Cl) = €23, J;{(CQ) = —e€;.

For simplicity, we use (z!, z%, z3) to denote the orthonormal coordinates
in a small neighborhood of p. We claim that df, - Jf = J - df, where J
is the complex structure on CP*. We observe that from (18), for the
first case in (18) and (19),

dfp - J;I(el) = dfy(e2) = J - dfp(e1),
dfy - J;I(e2) = —dfp(e1) = J - dfp(e2)-

Note for the second case in (18), we have df,, - Jf = —J -df,. Hence we
replace J¥ by —J in this case.

On the other hand, we observe that as a harmonic map from M to
CP*, the tension field 7(f) of f vanishes. Therefore

0=r"(f)
(20) = TraceVdf
= TraceVdf|n, xu, + TraceVdf|y, «v,,

where Vdf is the Hessian of f, and V is the connection induced on the
bundle T*(M) ® f~'T(CP*) over M by the Levi-Civita connections
on M and CP*. We have shown that f is horizontally holomorphic
into CP*. Hence the first term of the right-hand side of (20) vanishes.
Thus we have from (20) that

0= TraceVdflexVP
(21) = VI df (e5) — df (VM es)
= —df (VVes).

since df sends e; to 0. But Vﬁf e3 is the mean curvature of the fibre
through p, and it lies in the horizontal space H,. Since df is injective
on H,, we conclude that

(22) V?;Ieg = 0,

which implies that the fibre through p is minimal.
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Finally, a theroem of Baird and Eells [2] (see also [10]) asserts that for
a smooth map into a surface with rank 2 somewhere if it is horizontally
weakly conformal and has minimal fibres, then it is harmonic. Applying
this result to our map f, we conclude that f : M — K — f~}(S) —
f(M) — S is harmonic. Hence Lemma 4.8 is proved.

Lemma 4.9. fis a harmonic morphism from M — f~1(8) — K to
f(M)=S.

Proof. From the previous two lemmas, we have seen that f is hori-
zontally weakly conformal and harmonic, as a map from M —f~}(S)—K
to f(M) — S. Further, at any rank-2 point p € M — f~(S), df, :
To(M) = Ty (f (M) — S) is surjective. Then by the result of Ishihara
[13] and Fulgede [10], we conclude that f is a harmonic morphism from
M — f71(S) -~ K to f(M) — S C CP*. This completes the proof of
Lemma 4.9.

Proof of Theorem 4.6. According to Lemma 4.9, f is a harmonic
morphism at all rank-2 points in M — f~1(S) into f(M) — S. Further,
for any point g in K but not in f~1(S), f(g) is a smooth point on the
smooth surface f(M) —S. Since S is closed in f(M), f~!(S) is closed
in M. So f7Y(S)UK is closed in M, and M — f~}(S) — K is open.
Next, we claim that the set M — f~1(S) — K is dense in M. If this
is not true, then there is an connected open subset W of M, which is
contained in f7!(S)|JK. Since S consists of finitely many points, we
can take W small enough such that f(W) contains at most one point
y of S. Then we consider the following two cases. Case 1: If there is a
point in W but not in K, then the rank of f at this point is two. Hence
there is a small open neighborhood of the point contained in W — K,
and f maps this neighborhood to the single point y. Case 2: Every
point in W is a point in K, then f maps W to a single point because
the rank of f is 0 at any point in K and W is connected. In both
cases, Aronszajn’s unique continuation theorem [1] implies that f is a
constant map. Hence M — f~1(S) — K is open and dense. Therefore
we can take a sequence of points {g;} in M — f~!(S) — K such that
limg; = q. By Lemma 4.7 and Lemma 4.8, f is harmonic and weakly
horizontally conformal at each ¢;. Further, since f(q) is a smooth point
in f(M), f is a smooth map from a small neighborhood of g to a small
neighborhood in f(M) — S of f(g). Hence f is also harmonic and
weakly horizontally conformal at g by approximation. Therefore, f is
a harmonic morphism from M — f~'(S) to f(M)—S. This finishes the
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proof of Theroem 4.6.

5. Obstruction on the existence of stable
harmonic map from M?® into CP*

In this section, we will see that there exists a topological obstruction
for existence of smooth stable harmonic mappings from compact 3-
manifold into the complex projective spaces with the standard Fubini-
Study metric. Indeed, we have

Theorem 5.1. Let f be a non-constant smooth stable harmonic
mapping from a compact manifold of three dimensions without boundary
into CP* with the standard Fubini-Study metric. Then M is a Seifert
fibre space.

Proof. 1f k = 1, we have shown that M3 is a Seifer fibre space
if there is a non-constant stable harmonic map into CP'. For k > 2,
since f(M) is an algebraic curve in CP*, we use the following standard
method from algebraic geometry (see [11, p. 168]). Choose a generic
(k—2)-plane CP*~2 in C P* such that CP*~? is disjoint from f(M). Let
C P! be a complementary 1-plane. We choose homogeneous coordinates
X = [Xp,...,X}] on CP* such that CP*2 is given as Xo = X, = 0
and CP! as X, = ...X; = 0. Consider the projection of CP* to CP*,
projecting from CP*~2

7([Xoy s X]) = [Xo, X1].

As shown in [11], 7 : f(M) — CP! is a finite sheeted branched cover of
CP', at least away from the singular locus S. Hence 7|f(ar)\s is holo-
morphic into CP' which in turns implies that 7|za\s is @ harmonic
morphism into CP!.

Now we take the composition of f with m. We see that 7o f is a
smooth map from M to CP* for being the composition of two smooth
maps. Further, 7o f restricts to M\ f~1(S) is a harmonic morphism be-
cause the composition of two harmonic morphisms is again a harmonic
morphism [10]. Then it is easy to see that in fact 7 o f is a harmonic
morphism at every point on M by approximation, as we have done be-
fore. Further, 7 o f is not constant because 7|z(ar)\s is a finite sheeted
branched cover over CP!.

Finally, we recall a result of P. Baird and J.C. Wood which states
that if there exists a non-constant harmonic morphism from a compact
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3-manfold to a Riemann surface, then the compact 3-manifold is a
Seifert fibre space [3]. Hence Theorem 5.1 is proved.

The following Liouville type result is just Theroem 5.1 in disguise.

Theorem 5.2. Let M be a smooth compact 3-manifold which is not a
Seifert fibre space. Assume that there is a smooth stable harmonic map
f from M into CP* with the Fubini-Study metric. Then fis constant.

Remark. The Liouville type results for smooth stable harmonic
maps into the standard sphere S™ for n > 3 were obtained by Y.L. Xin
[25] for compact manifolds and by Scheon-Uhlenbeck [21] for R™.
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